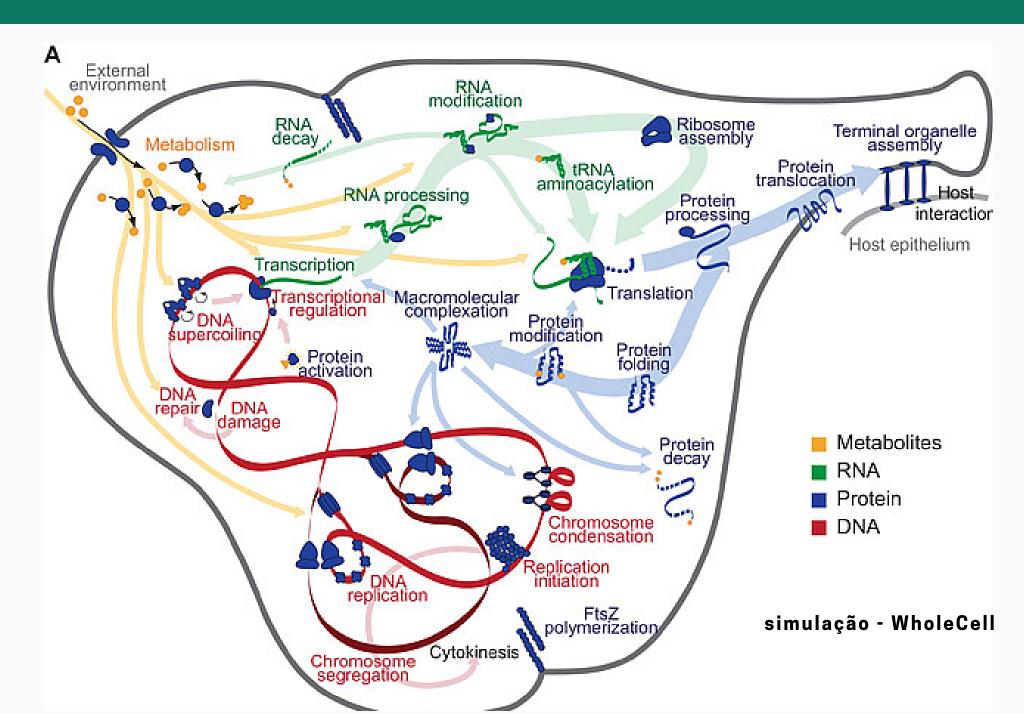
Trabalho de Conclusão de Curso Sistemas de informação

Modelagem Computacional de Sistemas Biológicos

Aluno: Raphael Silva de Abreu

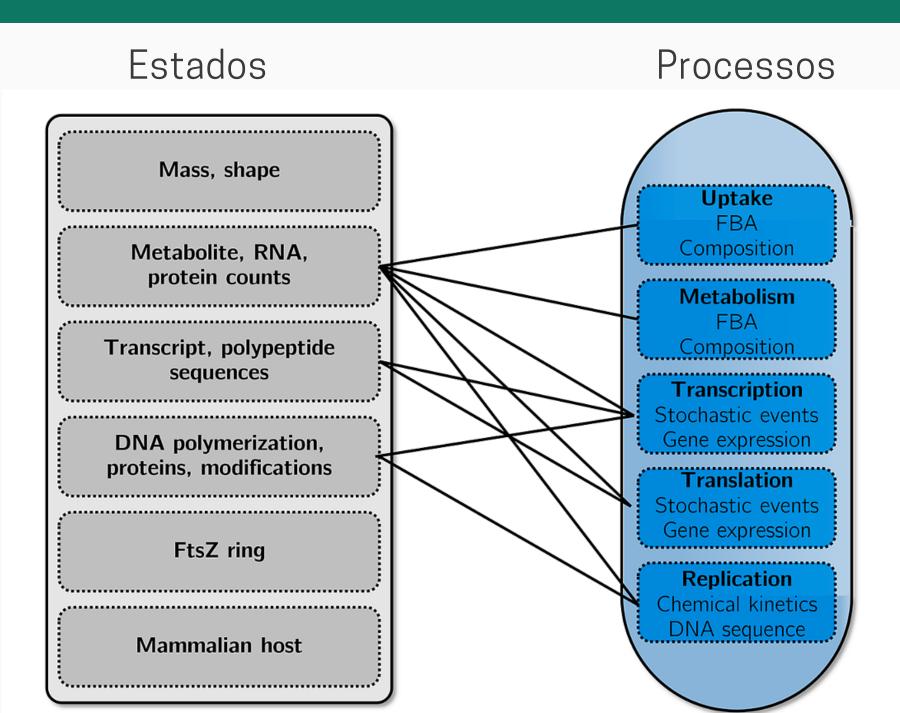
Orientador: Fábio Barreto

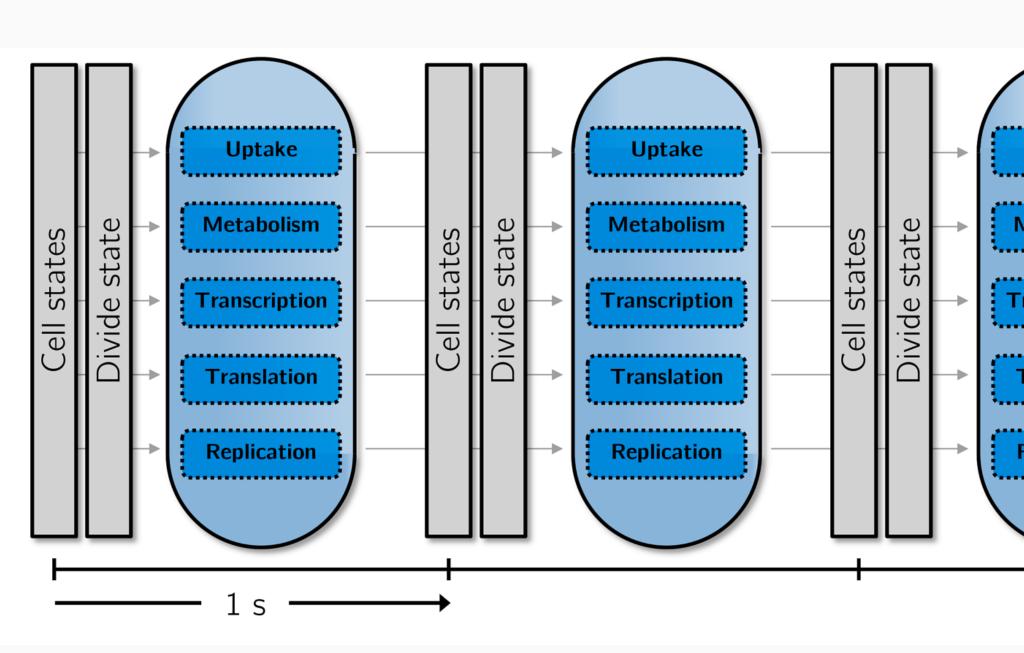
Centro Universitário La Salle do Rio de Janeiro


SUMÁRIO

- Modelo de célula completa
- Motivações
- Objetivos
- Métodos
- Resultados & Discussão
- Conclusão & Trabalhos futuros

- Representação matemática e computacional de um fenômeno biológico
- Modelo de célula completa


Compreender o comportamento
 de bactérias para descobrir tratamentos.


 Artigo recente sobre Modelagem computacional da bactéria M.Genitalium

- Não é trivial encontrar um método computacional que explique toda essa estruturas complexa resultante de componentes moleculares e suas interações.
- Diversos submodelos são necessários, também é preciso de um meio de integrar esses submodelos

 O WholeCell foi desenvolvido com 28 processos independentes que foram unidos em um único modelo computacional

FIOCRUZ

- Utilizar este modelo como base e para a simulação de outros organismos
- Buscar um alvo terapêutico para a Pseudomonas Aeruginosa

- M. Genitalium = 525 genes
- P. Aeruginosa = 6,822 genes

Simulation Step Size Analysis of a Whole-Cell Computational Model of Bacteria

R. Abreu¹ M. C. S. de Castro² F. A. B. Silva³

Centro Universitário La Salle do Rio de Janeiro
 Universidade do Estado do Rio de Janeiro
 Fundação Oswaldo Cruz

12th International Conference of Computational Methods in Science and Engineering - ICCMSE 2016

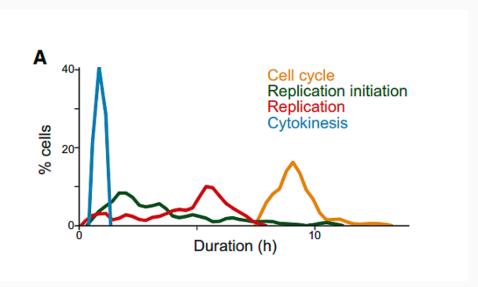
* Qualis B5 em 2014

MOTIVAÇÃO

- Foi assumido que todos esses processos podem funcionar separados e serem integrados após passar 1s de vida da bactéria
- Para cada segundo os processos efetuam os cálculos com as variáveis de estado e retornam os novos valores para estas variáveis
- O passo de simulação tem influência direta no tempo total de simulação

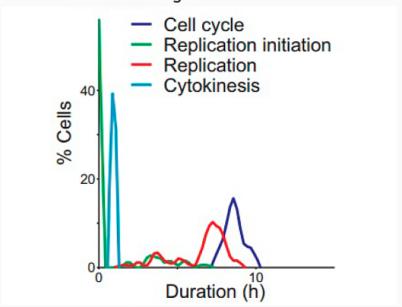
OBJETIVO

 Investigar a suposição que todos os processos podem ser modelados independentes em 1s de passo de simulação

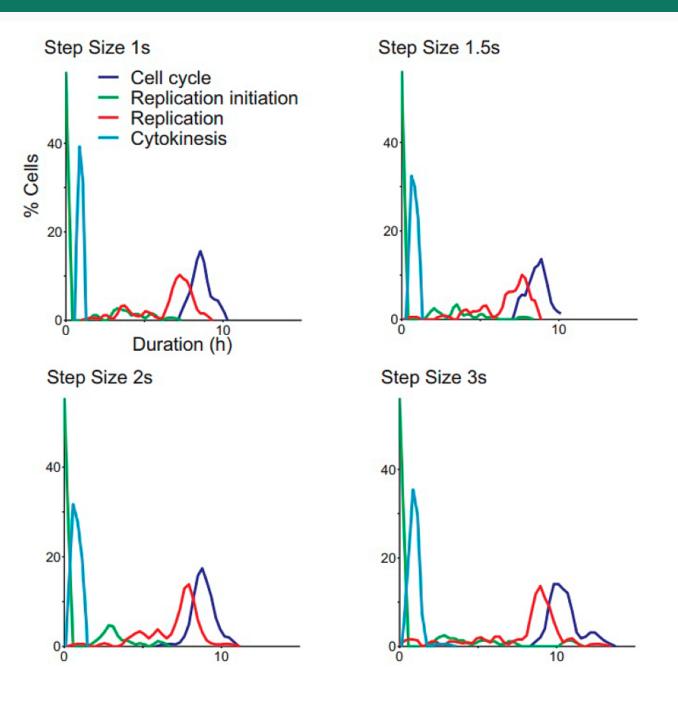

- Simular o ciclo celular usando passos de tempo maiores para simulação
- Comparar os resultados das novas simualções com aqueles obtidos com o passo de simulação padrão de 1s

MÉTODOS

- Simulações foram feitas no modelo in silico da
 M.genitalium, em MATLAB, com o código alterado para possibilitar maiores passos de simulação.
- Rodar 64 simulações até o fim do ciclo celular para cada um dos passos de tempo: 1.0, 1.25, 1.50, 1.75, 2.0 e 3.0 segundos
- Simulações a serem executadas em cluster linux com 10 nós (64 cores cada)


Passo de simulação de 1s (padrão)

Artigo original 128 simulações



Nossa reprodução

64 simulações

A seguir é mostrada a diferença de duração das fases do ciclo celular para cada aumento de passo de simulação

Para as variáveis estudadas

 Obtivemos o mesmo comportamento de ciclo celular observado em 1s para os passos de tempo de 1.5 e 2 segundos

 Experimento de 3 segundos mostrou um aumento no comprimento total do ciclo celular.

Passos de tempo (s)	Taxa de crescimento (1/cell/h)	Massa (fg)	Duplicação de Massa (h)	Ciclo Celular (h)	Tempo de processamento (h)
1,0	0,174	2,026	8,4	8,8	47,6
1,25	0,174	1,998	8,4	8,7	38,0
1,50	0,172	1,979	8,6	8,7	32,4
1,75	0,169	1,981	8,7	8,8	25,8
2,0	0,163	1,969	9,0	9,0	20,1
3,0	0,100	2,053	11,0	10,6	12,8

- Taxa de Crescimento ⇒ número de divisões celulares por hora. (1/cell/h).
- Massa ⇒ massa média da 64 simulações ao final do ciclo celular, em femtogramas(fg = 10⁻¹⁵ g).
- Duplicação de massa ⇒Tempo gasto no processo de divisão celular, horas (h)
- Tempo de ciclo celular ⇒ Tempo gasto até o fim da duplicação celular (h)
- Tempo computacional ⇒ Média do tempo de execução das 64 simulações (h)

Valores padrão

Taxa de Crescimento = 0,170 (1/cell/h)

Massa = 2,0 (fg)

Duplicação de Massa = até 9.0 (h)

Ciclo celular = 8.9 (h)

- Taxa de crescimento e Massa, Houve uma variação de 3% do passo de 2 segundos para mesmas variáveis do passo de simulação de 1 segundo.
- Duplicação de massa, houve uma variação de 7% quando comparada com o passo de 1 segundo. No entanto, este valor reproduz o mesmo comportamento observado experimentalmente.

DISCUSSÃO

 Considerando os passos de tempo até 2 segundos e as variáveis analisadas, a hipótese de independência de módulos continua válida.

• Reduzir o tempo de execução da simulação é muito importante para simular sistemas mais complexos.

• Com a mudança de passo de 1 para 2 segundos, o tempo total de computação foi **reduzido por 57,8%**

DISCUSSÃO

 Para o passo de simulação de 3 segundos, a independência dos módulos não pode ser provada.

 Se futuramente puder ser provada, Nossos experimentos indicaram uma redução potencial de tempo computacional em 73,1%.

CONCLUSÃO

 Apresentamos uma série de experimentos para avaliar o impacto do passo de tempo de simulação do modelo computacional da M.genitalium

 Podemos concluir preliminarmente que o passo de tempo de simulação pode ser aumentado sem afetar a hipótese de independência dos submodelos considerada ao desenvolver o modelo de célula completa

TRABALHOS FUTUROS

 Investigar a hipótese de independência dos módulos para uma análise mais aprofundada das variáveis do modelo e para o passo de tempo de 3 segundos

 Utilizar o modelo para a simulação de organismos mais complexos em recursos computacionais, como a Pseudomonas Aeruginosa (n³)

Obrigado!

CÓDIGO

Alterations on Whole cell model in MATLAB

• Passo de tempo alterado:

Na classe simulação e nos 28 submodelos de> StepSizeSec = 1 para> StepSizeSec = newTimeStep

 Todas as constantes relacionadas a tempo Exemplo:

de> proteinMisfoldingRate = 1e-6 (taxa para 1 segundo) para> proteinMisfoldingRate * newTimeStep